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Abstract: A novel nonlinear fractional order sliding mode controller is proposed to control 

the chaotic atomic force microscope system in presence of uncertainties and disturbances. 

In the design of the suggested fractional order controller, conformable fractional order 

derivative is applied. The stability of the scheme is proved by means of the Lyapunov 

theory based on conformable fractional order derivative. The simulation results show the 

advantages of the designed controller such as fast convergence speed, high accuracy and 

robustness against uncertainties and disturbances. 
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1 Introduction1 

HE atomic force microscope is a known device for 

imaging the topography of surfaces and surface 

analysis applications with the precise measurements at 

the nano-scale [1].  The atomic force microscope is 

composed of a probe with a microscopic tip joined to a 

cantilever. The force between probe tip and the sample 

surface leads to cantilever deviation. Using optical 

methods, cantilever deflection is calculated. Micro-

cantilever has chaotic behavior under in the specific 

conditions [2]. In [3], the micro-cantilever is modelled. 

Also, in order to suppress the chaotic behavior of atomic 

force microscope, a proportional and derivative 

controller is presented. In [4], a robust feedback 

controller is developed to control the chaotic behavior 

of atomic force microscope system. In order to control 

the chaotic behavior of atomic force microscope system, 

two control schemes are investigated in [5]. 

   Fractional calculus is known as an effective tool in 
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many applications. So far, several definitions of 

fractional order derivatives have been presented [6]. 

Recently, conformable fractional order derivative as a 

new definition of fractional order derivative is 

introduced. One of important its advantages is having 

simple calculation [7]. Various papers have been 

presented based on conformable fractional order 

derivatives. In [8], some important laws and definitions 

based on conformable fractional order derivative are 

presented. Fractional Newtonian mechanics based on 

conformable fractional calculus are studied in [9]. 

Stability of fractional differential systems is discussed 

using conformable fractional order derivative in [10]. 

   Sliding mode controller is an effective strategy to 

control systems with uncertainties and disturbances. 

In [11], two new nonlinear sliding mode controllers are 

developed. In [12], a chattering-free full-order nonlinear 

sliding mode controller is developed. In order to control 

type I diabetes in presence uncertainties and 

disturbances, a fractional order sliding mode controller 

and adaptive fractional order sliding mode controller are 

designed in [13]. For an uncertain manipulator, a fuzzy 

robust fractional order controller is developed in [14]. 

Fractional sliding mode schemes are presented to track 

and stabilize some nonlinear fractional-order systems 

with uncertainty in [15]. 

   In this study, a fractional order sliding mode controller 

involving a novel switching function based on 

conformable definition is designed to remove chaotic 

behavior of atomic force microscope system. The 

stability analysis for the proposed controller is discussed 
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using Lyaponuv theorem based on conformable 

operators. The simulation results show the effectiveness 

of the developed controller. 

   The paper is organized as follows: Some mathematical 

preliminaries are presented in Section 2. Mathematical 

model of atomic force microscope system is introduced 

in Section 3. In Section 4, fractional order Lyapunov 

stability based on conformable fractional order 

derivative is investigated. A novel fractional order 

sliding mode controllers with conformable fractional 

order derivative is discussed in Section 5. Section 6 

demonstrates simulation results of the suggested 

scheme. Finally, Section 7 concludes this article. 

 

2 Basic Definitions and Preliminaries  

   In this section, some basic definitions and 

preliminaries of fractional calculus are presented. 

Definition 1 [7]. The below fractional order definition 

is called conformable fractional derivative. 
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where f: [0,∞) → R and 0 < α < 1. 

Definition 2 [7]. The conformable fractional order 

integral is defined as: 
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where, α ∈ (0, 1). 

Theorem 1 [7]. Consider f(t) be a continuous function 

such that 0 ( )t I f t
  exists. Then, 
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where, α ∈ (0, 1]. 

Definition 3 [8]. The fractional Laplace transform of 

order α of f (t) is defined as: 
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where, α ∈ (0, 1] and f: [t0,∞) → R. 

Lemma 1 [8].  Consider f: R+ → R, its fractional 

Laplace transform is defined as 
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Theorem 2 [7]. Consider α-differentiable functions f(.) 

and g(.), some properties of conformable fractional 

order derivatives are as 

1) Tα(af+bg)=aTα(f)+bTα(g), for all a, b ∈ R 

2) Tα(tp)=ptp-α for p ∈ R 

3) Tα(𝜆)=0, for all constant functions f(t)=λ 

4) Tα(fg)=fTα(g)+gTα(f) 

5) 
2
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6) If f(.) is differentiable, then 1( ) ( )
df

T f t t
dt

   

where α ∈ (0, 1]. 

   In this paper, the notations Tα and T-α denote 

conformable fractional order derivative and integral, 

respectively. 

 

3 Mathematical Model of Atomic Force Microscope 

System 

   The mathematical model of atomic force microscope 

system in presence of uncertainties and external 

disturbances is described by: 
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|d(t)| ≤ D and |∆f(X)| ≤ ∆ are external disturbances and 

system uncertainties, respectively [4]. 

 

4 Stability Analysis 

   In this section, the Lyapunov direct method is 

investigated by using conformable fractional order 

derivative. 

   Consider conformable fractional dynamic system as 

follows: 
 

0
( ( )) ( , ( ))t T x t f t x t   (7) 

 

where, f(t, x(t)) is a nonlinear function that describes 

dynamics of the system (7). 

Definition 4. The system (7) is conformable stable, if its 

solution satisfies the below inequality: 
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where, t0 is the initial time, α ∈ (0,1), λ > 0, b > 0, 

h(0) = 0, h(x(t0)) ≥ 0. The inequality (8) is the solution 

of Eq. (7) such that its origin is stable. 

   In the sequel, without loss of generality, we assume 

that the equilibrium point is in the origin. 

Theorem 3. Assume that there exist a Lyapunov 

function as V(t,x(t)): [0,∞)×D→R. If it satisfies (9) and 

(10), the equilibrium point is conformable stable. 
 

1 2( , ( ))
a ab
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ab
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where, t ≥ 0, α ≥ 0, α ∈ (0,1), l1, l2, l3, a and b are 

arbitrary positive constants. 

Proof. By using Ref. [16], according to (9) and (10), we 

have 3

2

( , (( )) ( , ( ))
l

T V t x t V t x t
l

   . 

Taking the fractional Laplace transform yields to: 
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where V(0) = V(0,x(0)) ≥ 0. 

Applying inverse fractional Laplace transform to the 

(12), 
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Consider h(t) as follows: 
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So, system (7) is conformable stable. 

 

5 Design Procedure 

   In this section, the design procedure of new fractional 

order sliding-mode controller is presented. The design 

of the proposed fractional order sliding mode controller 

involves developing nonlinear fractional order sliding 

surface with desired system dynamics as well as 

switching function design. 

   The sliding surface is proposed as 
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where α ∈ (0, 1) and q ∈ (0, 1). 

Taking the time derivative of the above equation, one 

can obtain: 
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For obtaining equivalent control law, sliding surface 

derivative must satisfy the below equation. 
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In absence of uncertainty and according to system 

dynamics, the equivalent control is obtained as: 
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Afterwards, the reaching law is designed as: 
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Since the control law is u(t) = ueq(t)+ur(t), so using (18) 

and (19) yields: 
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Theorem 4. The dynamics of the fractional order 

system under sliding mode controller (20) is 

asymptotically stable and its state trajectories approach 

to origin finite time. 

Proof. Let us consider the Lyapunov function candidate 

as: 
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According to (6) and (20), we have (23). 
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Simplifying the above equation, results in 
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This completes the proof. 

Theorem 5. The state trajectories of the controlled 

system (6) by the controller (20) converge to the 

nonlinear fractional order sliding surface s = 0 in a finite 

time. 

Proof. Considering V(s) = ½s2(t), one has 
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Thus, we have: 
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From Eq. (20), we have 
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Simplifying the (29) results in: 
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So, for |∆|+|D|+η ≤ k, the proof is completed.  

   The state trajectories of the controlled system will 

converge to zero asymptotically. In the following, the 

convergence to zero in finite time is shown. 

According to reaching condition Eq. (25): 
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So, the reaching time is as: 
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6 Simulation Results 

   This section is utilized to confirm the performance of 

the designed scheme. Consider the atomic force 

microscope system (6) with the follow parameters [4]. 

1

4

27
a  , 

2 1.2a  , 
3 1a  , 

4 2.9a   , 
5 0.1a  , 

2.5z  , 
1 20.1sin(4 )sin(4 )f x x    and 

( ) 0.2sin(0.5 )d t t . 

Where, the parameters of controller are gained by 

manipulating as follow: 

1

4

27
m  , 

1 1.8b  , 
1 30c  , 

2 10c  , 
3 30c  , 

4 30c  , 

1 4.5k  , 0.4k  , 0.97  , 0.65  , 0.75q  . 

The control input is activated from t = 50. For the initial 

value [x1(0) x2(0)], T = [0, 0]T. 

Fig. 1 demonstrates the state trajectories of the 

controlled system (6) under control law (20). Fig. 2 

shows the control input. The simulation results 

demonstrate the advantages of the proposed method 

such as fast convergence and high accuracy. Also, it is 

obvious that using conformable fractional order 

operators leads to simple mathematic calculations in 

control design procedure. 

   Figs. 3 and 4 show the proposed controller improved 

the convergence speed compering with [11] and [12]. 

   Fig. 3 represents the results applying the proposed 

controller in comparison with the designed controller 

adopted from [11] with the control law as 
 

99
2316

2 2 1( ) 7sgn 10 nu f t x x x u      (35) 

where 1 2

1 1 3 4 5 22

1

( ) ( cos )
( )

a a
f t a x a a a x

x z
    


 and 

0.1n nu u v  , 10sgn( )v s  . 

Fig. 4 shows the state trajectories of the controlled 

system in comparing with the controller adopted 

from [12] with the control law as 
 

1/5

2 2( ) 2 0.01 0.2
s

u f t g z s
s 

     


 (36) 

 

where 1 2

1 1 3 4 5 22

1

( ) ( cos )
( )

a a
f t a x a a a x

x z
    


,

2 1 1 1 1 2( [( ) ])g b b b z z     and 
1 0.2b  . 

In Fig. 5, control inputs are illustrated. 

 

7 Conclusion 

   This article introduces the fractional order sliding 

mode controller with the novel fractional order 

switching law to stabilize and suppress the chaotic 

behaviour of atomic force microscope in presence of 

uncertainty and disturbance. The control scheme is 

based on conformable fractional order derivative. The 

developed controller has some advantages such as quick 

convergence speed, high accuracy and robustness 

against uncertainties and disturbances. The finite-time 

stability analysis is performed by using the Lyapunov 

theory based on conformable fractional order derivative. 

Finally, simulation results are given to show the 

efficiency of the proposed scheme. 
 

 
(a) 

 
(b) 

Fig. 1 Responses of system state trajectories; a) x1 and b) x2. 
 

 
Fig. 2 The control law u. 

 



Design of Fractional Order Sliding Mode Controller for Chaos 

 
… S. Haghighatnia and  H. Toossian Shandiz 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 2, June 2019 227 

 

  
(a) (b) 

Fig. 3 Responses of system state trajectories; a) x1 and b) x2. 

 

  
(a) (b) 

Fig. 4 Responses of system state trajectories; a) x1 and b) x2. 

 

 
Fig. 5 Control inputs. 
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